A FIRE-ACE/SHEBA Case Study of Mixed-Phase Arctic Boundary Layer Clouds: Entrainment Rate Limitations on Rapid Primary Ice Nucleation Processes
نویسندگان
چکیده
Observations of long-lived mixed-phase Arctic boundary layer clouds on 7 May 1998 during the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE)–Arctic Cloud Experiment (ACE)/Surface Heat Budget of the Arctic Ocean (SHEBA) campaign provide a unique opportunity to test understanding of cloud ice formation. Under the microphysically simple conditions observed (apparently negligible ice aggregation, sublimation, and multiplication), the only expected source of new ice crystals is activation of heterogeneous ice nuclei (IN) and the only sink is sedimentation. Large-eddy simulations with size-resolved microphysics are initialized with IN number concentration NIN measured above cloud top, but details of IN activation behavior are unknown. If activated rapidly (in deposition, condensation, or immersion modes), as commonly assumed, IN are depleted from the well-mixed boundary layer within minutes. Quasi-equilibrium ice number concentration Ni is then limited to a small fraction of overlying NIN that is determined by the cloud-top entrainment rate we divided by the number-weighted ice fall speed at the surface yf. Because wc , 1 cm s 21 and yf . 10 cm s , Ni/NIN 1. Such conditions may be common for this cloud type, which has implications for modeling IN diagnostically, interpreting measurements, and quantifying sensitivity to increasing NIN (when we/yf , 1, entrainment rate limitations serve to buffer cloud system response). To reproduce observed ice crystal size distributions and cloud radar reflectivities with rapidly consumed IN in this case, the measured above-cloud NIN must be multiplied by approximately 30. However, results are sensitive to assumed ice crystal properties not constrained by measurements. In addition, simulations do not reproduce the pronounced mesoscale heterogeneity in radar reflectivity that is observed.
منابع مشابه
Aircraft Microphysical and Surface-Based Radar Observations of Summertime Arctic Clouds
Updated analyses of in situ microphysical properties of three Arctic cloud systems sampled by aircraft in July 1998 during the Surface Heat Budget of the Arctic Ocean (SHEBA)/First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment–Arctic Clouds Experiment (FIRE–ACE) are examined in detail and compared with surface-based millimeter Doppler radar. A fourth case is give...
متن کاملAn Arctic Springtime Mixed-Phase Cloudy Boundary Layer Observed during SHEBA
The microphysical characteristics, radiative impact, and life cycle of a long-lived, surface-based mixedlayer, mixed-phase cloud with an average temperature of approximately 20°C are presented and discussed. The cloud was observed during the Surface Heat Budget of the Arctic experiment (SHEBA) from 1 to 10 May 1998. Vertically resolved properties of the liquid and ice phases are retrieved using...
متن کاملPossible roles of ice nucleation mode and ice nuclei depletion in the extended lifetime of Arctic mixedphase clouds
[1] The sensitivity of Arctic mixed phase clouds to the mode of ice particle nucleation is examined using a 1-D cloud model. It is shown that the lifetime of a simulated low-level Arctic mixed-phase stratus is highly sensitive to the number concentration of deposition/condensationfreezing nuclei, and much less sensitive to the number of contact nuclei. Simulations with prognostic ice nuclei con...
متن کاملTests and improvements of GCM cloud parameterizations using the CCCMA SCM with the SHEBA data set
A GCM cloud microphysics parameterization is tested and improved using the CCCMA single-column model with cloud properties obtained at the Surface Heat Budget of the Arctic Ocean experiment (SHEBA) during the period of November 1997 to September 1998. The ECMWF reanalysis water vapor profile is scaled with rawinsonde data so that the new relative humidity profiles are compatible with rawinsonde...
متن کاملProcess-model simulations of cloud albedo enhancement by aerosols in the Arctic.
A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN), either through geoengineering or other increased sources of Arctic aerosols. An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011